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ABSTRACT. This document serves as the class notes for Young Tableaux and Combinatorics
class taught by Shiyue Li in Week 3 of Canada/USA Mathcamp 2019. These notes are based on
Kevin Carde’s class in 2017 on Combinatorics of Young Tableaux.

1. DAY 1

1.1. Standard/Semistandard Young Tableaux, RS/RSK Correspondence.

Definition 1.1. Given an positive integer n > 0, a partition λ of n is a sequence (λ1,λ2, . . . ,λd )
such that

λ1 ≥λ2 ≥ ·· ·λd > 0.

and
∑
λi = n. If a sequence λ is a partition of n, we denote λ` n.

Definition 1.2. Given a partition λ ` n, a Young diagram λ of size n is an left-aligned ar-
rangement of n boxes such that the i -th row contains λi boxes. We use “shape" and “Young
diagram" interchangeably.

Example 1.3. The Young diagram corresponding to the partition (3,2) of 5 is as follows.

Proposition 1.4. Given n > 0, the set of all Young diagrams of size n is in bijection with parti-
tions of n.

Definition 1.5. A standard Young tableau (SYT) of a Young diagram λ` n is a bijective map
from the boxes of λ to [n] such that all rows and columns are strictly increasing. In other
words, it is a filling of the boxes in λ using numbers in [n].

Example 1.6. There are 5 standard Young tableaux associated with the shape (3,2). They are

1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

, 1 3 4
2 5

, 1 3 5
2 4

.

Definition 1.7. Given n > 0, a composition µ of n, is sequence of numbers (µ1, . . . ,µk ) such
that

∑
µi = n.

Definition 1.8. Given a shapeλ` n, a compositionµ= (µ1, . . . ,µk ) and a semistandard Young
tableau (SSYT) of λ is a filling of λ using content µ such that the followings hold:

• The number i appears µi times.
• All rows are weakly increasing.
• All columns are strongly increasing.
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There are many combinatorial questions that we would like to answer in this class regard-
ing/using combinatorial theory of Young tableaux.

(a) Given n > 0, what’s the relation between f λ and n?
(b) How many standard Young tableaux are there given a shape λ` n?
(c) How many semistandard Young tableaux are there given a shape λ` n and a compo-

sition µ of n?
(d) USAMO 2016 #2: For any positive integer k, show that

(k2)! ·
k−1∏
j=0

j !

( j +k)!

is an integer.

Notation 1.9. Given n > 0 and λ ` n, let f λ be the number of standard Young tableaux of
shape λ.

Today we are devoted to answering the first question.

Observation 1.10. (a) When n = 1, we only have the SYT

1 .

(b) When n = 2, we have the SYT

1
2

and 1 2 .

(c) When n = 3, we have the SYT

1 2 3 , 1 2
3

, 1 3
2

,
1
2
3

(d) When n = 4, we have the SYT,

1 2 3 4 , 1 2 3
4

, 1 2 4
3

, 1 3 4
2

, 1 2
3 4

, 1 3
2 4

,
1 2
3
4

,
1 3
2
4

,
1 4
2
3

,

1
2
3
4

.

Notice that in this case,

f = 1, f = 3,

f = 2, f = 3,

f = 1.

We might observe that

4! = 24 = ∑
λ`n

( f λ)2 = 12 +32 +22 +32 +1.
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Proposition 1.11. Given n > 0,

n! = ∑
λ`n

( f λ)2.

To prove this proposition, we establish a correpondence between symmetric group ele-
ments and standard Young tableaux.

Notation 1.12. Given a symmetric group Sn and an element σ, we can write σ in one-line
notation as follows:

σ :=σ(1)σ(2) · · ·σ(n).

Example 1.13. The symmetric group S3 contains elements 123,213,132,312,231,312.

Example 1.14. We can try using the one-line notation of S3 to construct standard Young
tableaux.

Consider 123 ∈ S3. We can put them in the Young diagram in a row as they are to get
the standard Young tableau 1 2 3 .

Consider the next element 213 ∈ S3. We can imitate the previous process to get a 2 when 2
comes in. Inserting 1, we have no choice but bump 2 to somewhere else. We can bump 2 to
the right, or to the next row; we get to decide on how we do this, as long as we do it consistently
and systematically. Let us bump 2 to the second row, and hence we obtain 1

2 . Inserting 3, we

get 1 3
2 .

Constructing standard Young tableaux using the above algorithm, for all S3 elements, we
have the following map from S3 to the set of standard Young tableaux of size 3:

123 7→ 1 2 3 ,

213 7→ 1 3
2 ,

132 7→ 1 2
3 ,

321 7→ 1
2
3

,

231 7→ 1 3
2 ,

312 7→ 1 2
3 .

But the map is far from injective! The permutations 132 and 312 give the same standard Young
tableaux under this algorithm. But something is different between them. If we track the steps
in the construction of the SYT of 132, we have

132 7→ 1 → 1 3 → 1 3
2 .

If we track the steps in the construction of the SYT of 312, we have

312 7→ 3 → 1
3 → 1 2

3 .

Observation 1.15. We have the following observations.

(a) The permutations that result in the same SYT construct the SYT in distinctly different
orders.
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(b) The arrangement of the boxes that record the location of i -th box being constructed
is a SYT, for i = 1, . . . ,n. For example, recording the location of the i -th box in the
SYT of 132, we have 1 2

3 ; we have 1 3
2 for recording locations in the SYT of 312. If we

pair these “location-recording SYT" with the previous set of SYT, we get a bijection
between S3 and the pairs of SYT of the same shape with size 3.

123 7→ 1 2 3 , 1 2 3

213 7→ 1 3
2 , 1 3

2 ,

132 7→ 1 2
3 , 1 2

3

321 7→ 1
2
3

,
1
2
3

231 7→ 1 3
2 , 1 2

3

312 7→ 1 2
3 , 1 3

2 .

Proposition 1.16 (Robinson-Schensted Algorithm). Given n > 0, we construct pairs of SYT
for σ ∈ Sn . Write σ = s1 · · · sn using one-line permutation. Let us call the SYT on the left the
insertion tableau and the SYT on the right the recording tableaux. Starting with (∅,∅), insert
number si in the one-line notation of σ for each i = 1, . . . ,n:

• If si is bigger than all numbers in a row, append si at the right end of the row in the
insertion tableau; append i at the right end on the same row in the recording tableau.

• If there exists a number that is bigger than si , replace the minimum of such number
with si and insert the replaced number in the next row as above; append i at the same
location as where si ends up.

Since σ has finite length, this algorithm terminates and we obtain a pair of SYT of the same
shape.

Theorem 1.17 (Robinson-Schensted Correspondence). Given n > 0, the following insertion
algorithm performed on the one-line notation of Sn gives a bijection between permutations in
Sn and the pairs of standard Young tableaux of the same shape with size n.

Corollary 1.18. By RS Correspondence,

n! = |Sn | =
∑
λ`n

( f λ)2.

1.2. Exercises for Day 1.

Exercise 1.19. Carry out RS algorithm for the permutation 748261539.

Exercise 1.20. The inverse of a permutation π is defined as π−1(b) = a whenever π(a) = b.
Conjecture a relationship between the results of RS on π and the results of RS on π−1.

Exercise 1.21. This exercise walks you through the Robinson-Schensted-Knuth Correspon-
dence.

(a) Consider a 2×n matrix [
s1 · · · sn

t1 · · · tn

]
,
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where si and ti are positive numbers no greater than n, ti ’s are weakly increasing, si ’s
are ordered. Starting with the empty tableaux (∅,∅) and insert the pair (s1, t1) to the
insertion tableau on the left and recording tableau on the right. What do you get?

(b) Turn the matrix above into a N-matrix by doing the following: count the number of
columns with values (a,b) appeared in the matrix, record the count at the ab-entry
of a new matrix.

For example, try turning the matrix[
1 2 2 1
1 1 1 2

]
into aN-matrix.

(c) The algorithm in part (a) gives a bijection betweenN-matrices and pairs of semistan-
dard Young tableaux.

(d) Given anN-matrix M , how big is the shape of the resulting SSYT under RSK?
(e) Suppose anN-matrix M corresponds to a pair of SSYT (P,Q). In terms of M , how many

1s are in P? How many 2s, 3s, etc.? What about in Q?

2. DAY 2

2.1. The Cauchy Product, Schur Functions and Counting SSYT.

Example 2.1. Consider the matrix [
1 2 2 1
1 1 1 2

]
.

Observe that the columns are in lexicographic order, prioritizing the second row.
Inserting each column into a pair of insertion tableau and recording tableau, we obtain a

pair of semistandard Young tableaux.(
1 1 2
2

, 1 1 1
2

)
Definition 2.2. A two-line array is a 2×n matrix[

s1 · · · sn

t1 · · · tn

]
such that

• si , ti ∈ [n], for all i = 1, . . . ,n;
• for any i , j , the column (si , ti ) appears later than (s j , t j ) if ti > t j , or ti = t j and si ≥ s j

(i.e. the columns are sorted lexicographically prioritizing the second row).

Theorem 2.3 (Robinson-Schensted-Knuth Correspondence). There is a bijection between the
two-line arrays and the pairs of semistandard Young tableaux of the same shape.

Observation 2.4. It suffices to record number of copies for each column, or each pair of num-
ber that represents a column.

Imagine in a world where you are only allowed to construct two-line arrays with the column
(1,1). How many two line arrays can you have? You can have 1 empty two-line array, 1 two-
line array of size 2×1, 1 two-line array of size 2×2; in general, 1 two-line array of size 2×n for
every n ∈Z.
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If we record one copy of the column (1,1) by x1 y1 and think of concatenation as multipli-
cation of these monomials, we can have the power series in x1 y1:

1+x1 y1 + (x1 y1)2 +·· · = 1

1−x1 y1
.

The coefficient of the term (x1 y1)n counts the number of two-line arrays that we can construct
from concatenating n copies of (1,1).

Example 2.5. Consider the term x1x2
2 y1 y2 y3 in the Cauchy product∏

i , j

1

1−xi y j
.

This term has coefficient 3, corresponding to three two-line arrays correspond to x1x2
2 y1 y2 y3.

Proposition 2.6. The coefficient of the term
∏

xpi
i y

q j

j counts two line arrays where i appears
exactly pi times in the first row and j appears exactly q j times in the second row.

2.2. Exercises for Day 2.

Exercise 2.7. Consider the term x1x2
2 y1 y2 y3 in the Cauchy product∏

i , j

1

1−xi y j
.

(a) What is the coefficient of this term in the product, by expanding the product into
product of power series?

(b) Write down the two-line arrays corresponded with this monomial.
(c) Construct pairs of SSYT using the two-line arrays.

Exercise 2.8. Given a shape λ` n, show that the number of standard Young tableaux is equal
to the coefficient of x1x2 · · ·xn in the Schur function

sλ(x) = ∑
t∈SSYTλ

x t .

Exercise 2.9. We study the general properties of Schur functions.

(a) Consider the shape λ= . Write down explicitly the Schur function sλ= (x1, x2)?
(b) Consider the shapeλ= . Write down explicitly the Schur function sλ= (x1, x2, x3)?
(c) In genereal, given n > 0 and the shape

λ= (n) = ·· ·︸ ︷︷ ︸
n times

,

how many SSYT are there, in terms of n?
(d) What properties does sλ have for the shape any n > 0, and

λ= (n) = ·· ·︸ ︷︷ ︸
n times

?

(Hint: What happens when you permute the subscripts of the variables?)

We realize that Schur functions generalize symmetric functions to infinite power series.
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3. DAY 3

3.1. Hillman-Grassl Algorithm. Today we start answering the third question in our list: Given
a shape λ` n, how many standard Young tableaux are there?

The question is answered by the celebrated hook length formula.

Theorem 3.1. Given a shape λ` n, the number of standard Young tableaux of the shape λ is

f λ = n!∏
h h

where h ranges over all hook lengths of λ.

Example 3.2. Recall the example we saw on Day 1. There are 5 standard Young tableaux
associated with the shape (3,2). They are

1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

, 1 3 4
2 5

, 1 3 5
2 4

.

Indeed, by the Hook Length Formula:

f = 5!

4 ·3 ·2
.

Definition 3.3. Given a λ ` n, a reverse plane partition is a filling of λ with non-negative
natural numbers such that all rows and columns are weakly increasing.

Algorithm 1: Hillman-Grassl Algorithm

Result: A λ-tableau filled with 0 and another λ-tableau with nonzero entries
1 Start with the southwest non-zero entry of the tableau A;
2 Create an empty λ-tableau, called B ;
3 while there exists nonzero entries in A do
4 Start with the south-west most box that is nonzero;
5 while the box above is the same or the box to the right is nonzero do
6 if the box above is the same then
7 move up;
8 else if the box to the right is nonzero then
9 move to the right;

10 end
11 Subtract 1 from all the boxes traversed;
12 Write 1 in the box at the same column as the starting column and at the same row as

the ending row in B
13 end

For every hook length h, we define a geometric series in the variable q :

1+qh +q2h +·· · = 1

1−qh
.



8 SHIYUE LI MATHCAMP 2019

Each choice of hook length is independent from choices, all possible Hillman-Grassl tableaux
is counted by ∏

h

1

1−qh

where h ranges over all hook lengths of λ.
For each reverse plane partition, we add i to the i th row to turn it into a SSYT. The total

number that we have added is

d(λ) =λ1 +2λ2 +3λ3 +·· · .

All reverse plane partitions are thus counted by

q−d(λ)sλ(q1, q2, q3, · · · ).

Proposition 3.4. Given a shape λ` n, we have∏
h

1

1−qh
= q−d(λ)sλ(q1, q2, q3, · · · ).

3.2. Exercises for Day 3.

Exercise 3.5. This exercise walks you through the dual Robinson-Schensted-Knuth Corre-
spondence.

Consider a n ×n (0,1)-matrix (i.e. a matrix with entries 0 or 1). For example,1 0 1
0 1 0
1 0 1


(a) Turn the matrix into a two-line array by interpreting the entry ai j in the matrix as

having ai j copies of the column (i j ) and then sorting the columns in lexicographic
order.

(b) Produce a pair of tableaux using the same insertion algorithm together with the record-
ing tableau; but instead of bumping the minimum number larger than the insertee,
bump the maximum number smaller than the insertee.

(c) What can you say about the pair of tableaux that you obtain?
(d) Prove the identity: ∏

i , j
(1+xi y j ) =∑

λ

sλt (x)sλ(y),

where λt is the transpose of the shape λ (i.e. a shape obtained by flipping λ through
the diagonal). The right hand side is called the dual Cauchy product.

4. DAY 4

4.1. Coefficients and Limits. Recall that we proved the followings.

(a) Using two-line arrays, we showed that the Cauchy identity of Schur functions∏
i , j

1

1+xi y j
=∑

λ

sλ(x)sλ(y).
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(b) Using (0,1)-matrices, we showed that the dual Cauchy identity of Schur functions is∏
i , j

(1+xi y j ) =∑
λ

sλ(x)sλt (y).

We will plug y j = (1− q)q j for each j in the dual Cauchy identity. On the Schur function
side, the Schur function associated with the transposed tableau becomes

sλt ((1−q)q, (1−q)q2, . . .) = (1−q)n sλt (q1, q2, . . .)

=∏
h

1−q

1−qh

=∏
h

1

1+q1 +q2 +q3 +·· ·+qh−1
.

Taking the limit, the right hand side of the dual Cauchy identity becomes∑
sλ(x)

∏
h

1

h
.

On the Cauchy product side, we have

lim
q→1

∏
i , j

(1+xi (1−q)q j ) = lim
N→∞

∞∏
i=1

N∏
j=1

(
1+ xi

N
(1− 1

N
) j

)

= lim
N→∞

∞∏
i=1

(
1+ xi

N

)N

=
∞∏

i=1
lim

N→∞

(
1+ xi

N

)N

=
∞∏

i=1
exi

= e
∑

i xi .

4.2. Exercises for Day 4.

Exercise 4.1. Prove that ∑
λ`n

f λsλ(x) =
(∑

i
xi

)n

.

(Hint: Take the coefficient of the term y1 · · · yn on both sides of the Cauchy identity of Schur
functions.)

5. DAY 5

Today we move on to proving the Hook Length Formula.
Recall that we proved the following identity.

(a) The Cauchy identity for Schur functions:
(b) The dual Cauchy identity for Schur functions:∏

i , j
(1+xi y j ) = ∑

λ`n
sλ(x)sλ(y).
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(c) Plugging in y j = (1− q)q j for both side of the dual Cauchy identity, and taking the
limit as q → 1, we have ∑

λ`n

f λ

n!
sλ(x) = ∑

λ`n

∏
h

1

h
sλ(x).
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