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1 What are Modular Forms?

1.1 Why Do We Care?

Modular forms were considered central to Wiles’ proof of Fermat’s Last Theorem. The
history of modular forms along the line of FLT is roughly as follows:

• In 1925, Hecke contibuted hugely to the pillar of the theory of modular forms.

• During Hitler and the war, most of the celebrated progress made by German math-
ematicians in this field except for Eichler, Maass, Petersson, and Rankin were ig-
nored.

• In 1956, Taniyama (1956) stated a preliminary (slightly incorrect) version of the
Taniyama-Shimura Conjecture: Every rational elliptic curve is modular.

• In 1967, Weil rediscovered the Taniyama-Shimula conjecture and showed it would
follow from the (conjectured) functional equations for some twisted L-series of the
elliptic curve.

• In 1986, Frey called attention to the curve y2 = x(x− an)(x− bn), whose solution
(if exists) will suggest that the curve is not modular and is the solution to an + bn =
cn, n ≥ 3, disproving Fermat’s Last Theorem.

Applications of modular forms to other problems in number theory and arithmetic
geometry abound. Just to name a few:

• Congruent number problem: This ancient open problem is to determine which
integers are the area of a right triangle with rational side lengths. There is a po-
tential solution that uses modular forms (of weight 3/2) extensively (the solution
is conditional on truth of the Birch and Swinnerton-Dyer conjecture, which is not
yet known).

• Cryptography and Coding Theory. Points counting on elliptic curves over fi-
nite fields is crucial for constructing elliptic curve cryptosystems. Computation
of modular forms gives efficient algorithms for point counting.

• Generating functions for partitions. The generating functions for partitioning an
integer can be related to modular forms.

The following box contains mysterious stories that we might or might not unfold in
this class, but it will give us a general sense of directions.

Big Picture: There is a one to one correspondence between the orbit space of
SL2(Z) action onH and the isomorphism classes of elliptic curves. That is,

SL2(Z) \ H 1:1←→ { elliptic curves over C}/ ∼= .
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Modular forms are related to the left hand of the correspondence. So let’s start from
here.

1.2 Modular Group and Action on the Upper Half Plane

Definition 1.1. LetH be the upper half plane of C; that is,

H = {z ∈ H : z = x + iy, y > 0}.

Definition 1.2 (Modular Group). The full modular group or modular group is the
group of all matrices of the form

γ =

a b

c d

 with a, b, c, d ∈ Z and det(γ) = ad− bc = 1.

This group is called SL2(Z) or special linear group of 2× 2 matrices over Z.

Example 1.3. The matrices

S =

0 −1

1 0

 , and T =

1 1

0 1


are both elements of SL2(Z). In fact, S, T generate SL2(Z) (Exercise).

Remark 1.4. The relationship between Z and R is very similar to the relationship of
SL2(Z) and SL2(R): Z and SL2(R) are the discrete subgroup of the larger group.

Definition 1.5. For a group G and a set S, a group action A is a map from G × S to S,
such that

• (e, s) 7→ s for all s ∈ S and e is the identity element;

• (gh, s) 7→ (g, (h, s)) for all g, h ∈ G and s ∈ S.

Definition 1.6. For any γ ∈ SL2(Z), and any point z ∈ H, we can let γ =

a b

c d

 send

z to az+b
cz+d . This defines a group action of SL2(Z) onH (Exercise).

Definition 1.7. For each element z in H, the orbit of z under the action of G, is defined
to be

Gz := {gz : g ∈ G}.
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Figure 1: Fundamental Domain D ofH under action of SL2(Z).

Definition 1.8. A fundamental domain D of H under the action of G is defined to be
the set z ∈ H such that for any x ∈ H, there exists some x0 ∈ D and g ∈ G such that
gx0 = x. In other words, a fundamental domain D ofH under the action of SL2(Z) is a
set of orbit representatives under the action of SL2(Z).

Modular forms are nothing but some “nice” complex functions H → C such that it
satisfies some symmetries under the group action SL2(Z). By “nice”, we mean that the
functions do not blow up themselves.

Definition 1.9 (Meromorphic Functions). Let D be an open subset of C. A function
f : D → C∪ {∞} is meromorphic if it is holomorphic except (possibly) at a discrete set
S of points in D, and at each α ∈ S there is a positive integer n such that (z− α)n f (z) is
holomorphic at α.

Example 1.10. Are these functions meromorphic?

(i) f (x) = 1
x2+1 ;

(ii) f (z) = z3−2z+10
z5+3z−1 ;

(iii) h(z) = ez.

Remark 1.11. Every meromorphic functions can be written as ratio of two holomorphic
functions but the denominator cannot be constantly 0.

Definition 1.12 (Holomorphic Functions). Let D be an open subset of C. A function
f : D → C is holomorphic if f is complex differentiable at every point z ∈ D, i.e. for
each z ∈ D, the limit

f ′(z) = lim
h→0

f (z + h)− f (z)
h
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exists, where h may approach 0 along any path.

Remark 1.13. The existence of a complex derivative in a neighborhood of z0 is a very
strong condition, for it implies that any holomorphic function is actually infinitely dif-
ferentiable and equal to its own Taylor series (analytic) in a neighborhood of z0.

Definition 1.14 (Weakly Modular Function of Weight k). A weakly modular function
of weight N ∈ Z is a meromorphic function f on H such that for all γ ∈ SL2(Z) and
all z ∈ H, we have

f (z) = (cz + d)−n f (γ(z)) = (cz + d)−n f
(

az + b
cz + d

)
.

The constant functions are weakly modular of weight 0.

In Exercise, we will show that there are no odd-weighted weakly modular functions.
For later convenience, we will use 2k, k ≥ 0 for weight 2k and skip all odd weights. We
will later show that there are many weakly modular functions of weight 2k, for k a
positive integer.

1.3 Exercises for Day 1

Exercise 1.15. If you have not seen the definition of group before, look up the definition
of a group and show that group of 2 × 2 matrices with integer coefficients and with
determinant 1 form is indeed a group under matrix multiplication.

Exercise 1.16. For any γ =

a b

c d

 ∈ SL2(Z), and any z ∈ H, what is the imaginary

part of γz?

Exercise 1.17. Show that the map A : SL2(Z)×H 7→ H, defined by

(γ, z) 7→ az + b
cz + d

where γ =

a b

c d

 ∈ SL2(Z) and z ∈ H, is a group action.

Exercise 1.18. Show that S and T (Example 1.3) are the generators of SL2(Z).

Exercise 1.19. Every rational function (quotient of two polynomials) is a meromorphic
function on C.

Exercise 1.20. Show that there cannot be weakly modular functions of odd weights.

Exercise 1.21. Show that the differential form of weight 2k, f (z)(dz)2k, is invariant un-
der the action of every element of SL2(Z).
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1.4 Eisenstein Series

Recall that we discussed the group action of SL2(Z) and its fundamental domains in
the upper half planeH.

Thoughout, we work with a chosen fundamental domain

D = {z ∈ H : |Re(z)| ≤ 1
2

, |z| ≥ 1}.

It is worth mentioning that subgroups of SL2(Z) fixes certain points inH. (Exercise)

• i is fixed by the subgroup of SL2(Z) generated by S.

• ρ = e2πi/3 fixed by the subgroup of SL2(Z) generated by ST.

• −ρ = eπi/3 fixed by the subgroup of SL2(Z) generated by TS.

We recall the following definitions.

Definition 1.22 (Modular Function). A modular function of weight 2k is a weakly mod-
ular function of weight 2k that is meromorphic at i∞.

Definition 1.23 (Modular Form). A modular form of weight 2k is a modular function
of weight 2k that is holomorphic onH and at i∞. 1

Observe that the generators of SL2(Z) are

S =

0 −1

1 0

 and T =

1 1

0 1

 .

Definition 1.24. Let k ≥ 2. The nonnormalized weight 2k Eisenstein series is the
function on the upper half planeH given by

G2k(z) = ∑
m,n∈Z,mz+n 6=0

1
(mz + n)2k .

Proposition 1.25. The Eisenstein series G2k is a modular form.

Lemma 1.26 (Weierstrass M-test). Suppose that { fn}∞
n=0 is a sequence of sequence of real and

complex functions on a set S, and suppose that there is a sequence of positive numbers {Mn}∞
n=0

such that
∀n ≥ 0, ∀x ∈ S, | fn(x)| < Mn

and
∞
∑

n=0
Mn < ∞. Then

∞
∑

n=0
fn converges absolutely and uniformly on A.

1The reason why we differentiateH and ∞ is because that the complex plane does not contain ∞. You
might have noticed that we only talked about Im(z) → ∞ but never Im(z) = ∞. ∞ is not an element of
R, nor an element of C!
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Lemma 1.27. Any absolute convergent sequence is convergent.

Lemma 1.28. Uniform limit of holomorphic functions is holomorphic.

Proof. (a) Show that it is invariant under S and T (Exercise).

(b) We want to show that the series for G2k(z) converges absolutely for all z ∈ H
using Weierstrass M-test. Because the fundamental domain D can be transported
under the action of SL2(Z) to coverH and in (a), we show that G2k(z) is invariant
under SL2(Z), it is sufficient to show that G2k(z) is holomorphic on D.

Since for every m, n ∈ Z such that mz + n 6= 0, we have

| fm,n(z)| =
∣∣∣∣ 1
(mz + n)2k

∣∣∣∣ = 1
|mz + n|2k =

1
(m2 |z|+ 2mnRe(z) + n2)k ≤

1

|mρ + n|2k := Mm,n.

Since

∑
(m,n)∈Z2,mz+n 6=0

Mm,n = ∑
(m,n)∈Z2,mz+n 6=0

1

|mρ + n|2k

=
∞

∑
`=0

∑
`≤|mρ+n|≤`+1

1

|mρ + n|2k

≤
∞

∑
`=0

O(`)
`2k

= c
∞

∑
`=0

1
`p , p = 2k− 1 ≥ 3,

applying Weierstrass M-test shows that Gk is uniformly and absolutely conver-
gent. By Lemma 1.28, Gk is the uniform limit of a sequence of holomorphic func-
tions, hence holomorphic in D. Since D can be used to cover H under the action
of SL2(Z), Gk is holomorphic onH.

(c) We also want to show that G2k(z) is holomorphic at i∞ (Exercise).

1.5 The q-expansion of Modular Forms

Definition 1.29. Suppose f is a weakly modular function of weight 2k and f is holo-
morphic onH. We can have the following function f̃ : D→ C defined by

f̃ : e2πiz 7→ f (z).
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Since f : H → C is holomorphic onH, f̃ is holomorphic on the punctured unit disc and
will have a Laurent expansion in e2πiz centered at e2πiz = 0 (e2πiz evaluated at z = ∞).
Replacing e2πiz with q, we have

f (e2πiz) =
∞

∑
n=−∞

an(e2πiz)n =⇒ f (q) =
∞

∑
n=−∞

anqn, (q = e2πiz, z ∈ H).

This is the q-expansion of f .

Definition 1.30. Replacing q with e2πiz, we say that

f (e2πiz) =
∞

∑
n=−∞

an(e2πiz)n

is the Fourier expansion of f at i∞.

Definition 1.31. The order of f at i∞ is the index of the first non-zero coefficient in the
q-expansion.

vi∞( f ) := inf{n ∈ Z : an 6= 0}.
If −∞ < vi∞( f ) < 0, then f is said to be meromorphic at i∞ with a pole of order
|vi∞( f )|. If vi∞( f ) ≥ 0, then f is said to be holomorphic at i∞.

Definition 1.32. When f is holomorphic at infinity, i.e. vi∞( f ) ≥ 0, we can compactify
H by adding i∞ and let

f (∞) = f̃ (0) = a0,

where a0 is the 0-th coefficient in the Fourier expansion of f at i∞ or q-expansion of f at
0. If a0 = 0, we say that f is vanishing at i∞ and that f is a cusp form.

Definition 1.33. Let M2k(SL2(Z)) be the set of all modular forms of weight 2k on SL2(Z).
Let S2k(SL2(Z)) ⊆ M2k(SL2(Z)) be the set of all cusp forms of weight 2k on SL2(Z).

For simplicity, we use M2k and S2k to denote M2k(SL2(Z)) and S2k(SL2(Z)) respec-
tively.

Proposition 1.34. Let k1, k2 ∈ Z.

(a) Both M2k1 and S2k2 are C-vector spaces.

(b) If f ∈ M2k1 and g ∈ M2k2 , then f g ∈ M2k1+2k2 .

(c) If f ∈ S2k1 and g ∈ S2k2 , then f g ∈ S2k1+2k2 .

Proof. Exercise.

Definition 1.35. A algebra A over a field F is a vector space with multiplication × such
that
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• Distributive laws hold: (x + y)× z = x× z + y× z.

• F commutes with everything, i.e. F ⊆ Z(A) such that ax× by = ab(x× y) for all
a, b ∈ F.

Definition 1.36. A commutative algebra A over F is an algebra where × is commuta-
tive.

Example 1.37. (a) C;

(b) C[x];

(c) C⊕C.

On a side note, commutative algebra is a rich algebraic land that nurtures the fasci-
nating theory of algebraic geometry. In Week 4, Mark’s class on Algebraic Geometry
will be talking about geometry from commutative algebra point of view.
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1.6 Exercises for Day 2

Exercise 1.38. Show that G2k is invariant under S and T. That amounts to show that

G2k(z + 1) = G2k(z),

G2k

(
−1

z

)
= z2kG2k(z).

Exercise 1.39. Show that the limit of the Eisenstein series G2k as z → i∞ is 2ζ(2k). That
is

lim
z→i∞

G2k(z) = 2ζ(2k) = 2
∞

∑
n=0

1
n2k , n ∈ Z.

Note that ζ(s) is the Riemann Zeta Function, which is holomorphic everywhere except
for when s = 1 on C. Since in Eisenstein series, we are considering k > 1, so 2k > 2, and
hence 2ζ(2k) is a holomorphic function.

Exercise 1.40. Let k1, k2 ∈ Z.

(a) Both M2k1 and S2k2 are C-vector spaces.

(b) If f ∈ M2k1 and g ∈ M2k2 , then f , g ∈ M2k1+2k2 .

(c) If f ∈ S2k1 and g ∈ S2k2 , then f , g ∈ S2k1+2k2 .

Exercise 1.41. Show that
A =

⊕
k∈Z

M2k, B =
⊕
k∈Z

S2k

are commutative C-algebras.

Exercise 1.42. Give an example of a C-algebra that was not given in class.
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2 Vector Space Structure on Modular Forms of Weight 2k

In this section, we give a vector space structure on the space of modular forms of weight
2k of level 1. and also how to use Valence Formula to compute this space. The reason
why we kept saying modular form of level 1 is because we are considering SL2(Z)
action onH.

Definition 2.1. If f is a nonzero meromorphic function on H and for any p ∈ H, the
order of f at p is

vp( f ) := the largest integer n such that f (z)/(z− p)n is holomorphic at w.

Remark 2.2. • If f have zeros at p, vp( f ) is positive and is the multiplicity of the
zero at p.

• If f have poles at p, vp( f ) is negative and |vp( f )| is the multiplicity of the pole at
p.

We say that a zero or a pole is simple if it has multiplicity 1.

Recall that a fundamental domain D for SL2(Z) we work with is

D = {z ∈ H : |z| ≥ 1, Re(z) ≤ 1
2
}.

Recall that i = eπi/2, ρ = e2πi/3, −ρ = eπi/3 are fixed points of subgroups of SL2(Z).

Remark 2.3. When f is a modular function of weight 2k, use the identity

f (z) = (cz + d)−2k f (
az + b
cz + d

)

to show that vp( f ) = vγp( f ) for all p ∈ D and γ ∈ SL2Z. In other words, vp( f ) only
depends on the SL2(Z)-orbit of p, i.e. points in a fundamental domain.

Theorem 2.4 (Valence Formula). Let n be any integer and suppose that f is a modular func-
tion of weight 2k and is not identically zero. Then we have the following equation:

vi∞( f ) +
1
2

vi( f ) +
1
3

vρ( f ) +
∗
∑

p∈D
vp( f ) =

n
12

. (2.1)

The notation
∗
∑

p∈D
is a sum over all elements in D other than the points ρ and i.

Remark 2.5. Notice that one immediate implication of the Valence Formula is that f
has only finitely many poles and zeros in D. This makes sense since the fundamental
domain along with infinity is a compact, and since a modular function is meromorphic
on D and at i∞ (Exercise).
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Proof. See [Ser96] pages 85 - 87. The idea of the proof is to first assume that there are no
zeros on the contour and to integrate f ′

f aroud a contour C on D. By Cauchy’s argument
principle,

1
2πi

∫
C

f ′(z)
f (z)

dz = ∑
z∈D

vz( f ).

To allow zeros on the contour, we take little arcs around the fixed points i, ρ and take
the limits of the radius of the arcs.

Proposition 2.6. If n < 0, then Mn(SL2(Z)) = {0}.

Proof. Since modular forms are holomorphic, vp( f ) for all p ∈ D is non-negative. By
Valence Formula, there cannot be any modular forms that satisfies the formula but 0.

Proposition 2.7. M0(SL2(Z)) = C.

Proof. Let f ∈ M0(SL2(Z)), and then f (z) = f (γz) for all γ ∈ SL2(Z). Since f has
weight 0, f has no poles nor zeros in D. Suppose f is not constant, then the function
f (z)− f (i) belongs to M0(SL2(Z)) and has a zero at i, a contradiction. Hence f must
be constant.

Proposition 2.8. M2(SL2(Z)) = {0}.

Proof. The right hand side of valence formula is 1
6 . This is impossible unless f is 0.

Proposition 2.9. S2k(SL2(Z)) = {0} for all 2k ≤ 10.

Proof. Let f ∈ S2k(SL2(Z)) = {0} for 2k ≤ 10. Then the right hand side of the Valence
Formula becomes 5

6 . Since f vanishes at i∞, vi∞( f ) contributed 1 to the left hand side.
Since the other terms on the left hand side must be non-zero, it is impossible for 1 to
decrease to 5

6 and f must be identically zero.

Now we have obtained a sequence of results both on the space of modular forms
and its cusp form subspace. Recall that in Day 2’s Homework, we have seen that the
space of modular forms M2k(SL2(Z)) is a C-vector space.

Proposition 2.10. Both M2k(SL2(Z)) and S2k(SL2(Z)) are C-vector space.

Proof. Suppose f , g ∈ M2k(SL2(Z)), α, β ∈ C, and γ =

a b

c d

 ∈ SL2(Z). Then

(α f + βg)(γz) = α f (γz) + βg(γz)

= α(cz + d)−2k f (z) + β(cz + d)−2kg(z)

= (cz + d)2k(α f + βg)(z).
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Consider the q-expansions of f and g,

f = ∑ anqn, g = ∑ bnqn.

Then α f + βg = ∑(αan + βbn)qn so that

vi∞(α f + βg) ≥ min{vi∞( f ), vi∞(g)} ≥ 0.

Therefore, f ∈ M2k(SL2(Z)).

The remarks above can be summarized as the following proposition.

Proposition 2.11. If k ≥ 2, then M2k = S2k ⊕CG2k. 2

Proof. Let k ≥ 2. In Day 2’s Homework, we know that: when analyzing the terms in
Eisenstein series, we can separate the terms depending on whether (m, n) ∈ Z2 lies on
the imaginary axis or not. The terms with (m, n) on the imaginary axis give us 2ζ(2k),
which is not identically zero; that is,

G2k(z) = 2ζ(2k) + 2
∞

∑
m=1

∑
n∈Z

1
(mz + n)2k .

In fact, for k > 1

ζ(2k) =
(−1)k+1B2k(2π)2k

(2k)!
where B2k is the 2k-th Bernoulli numbers. The point of all these is that

2ζ(2k) 6= 0 ∈ C.

For example,

ζ(2) = 1 +
1
22 +

1
32 + · · · = π2

6
,

ζ(4) = 1 +
1
24 +

1
34 + · · · = π4

90
,

and the demonstration of the first equality is known as Basel problem. See this fun
video by 3Blue1brown. https://www.youtube.com/watch?v=d-o3eB9sfls.

For any f ∈ M2k, we can write

f = λG2k + ( f − λG2k)

where we choose λ so that λG2k(i∞) = f (i∞). Hence f − λG2k ∈ S2k.
The 1-dimensional C-subspace of M2k spanned by Gk intersect with Sk trivially, i.e.

Sk ∩CGk = {0}. Therefore, we have the following decomposition for k ≥ 2.

M2k = S2k ⊕CG2k.

2CG2k is a C-vector subspace in M2k, spanned by G2k.
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2.1 Exercises for Day 3

Exercise 2.12. When f is a modular function of weight 2k, use the identity

f (z) = (cz + d)−2k f (
az + b
cz + d

)

to show that vp( f ) = vγp( f ) for all p ∈ D. In other words, vp( f ) only depends on the
SL2(Z)-orbit of p.

Exercise 2.13. Show that if a function is meromorphic on a compact domain, the func-
tion must have only finietly many zeros and poles.

In the following exercise, we use a different language, namely the language of ho-
mological algebra, to show that M2k can be decomposed into Sk and a one dimensional
C-subspace.

Exercise 2.14. (i) Show that the map φ : M2k → C defined by f 7→ f (∞) is a C-linear
transformation

(ii) Show that φ is surjective.

(iii) Show that S2k is the kernel of the linear transformation φ.

(iv) Talk to Shiyue or look up the definition of an exact sequence. Show that the fol-
lowing sequence is exact:

0→ S2k → M2k
φ−→ C→ 0,

where φ is defined by f 7→ f (∞) as in previous exercise.

Exercise 2.15. Show that M2k = CG2k for k = 2, 3, 4, 5.

Exercise 2.16. Show that the non-normalized Eisenstein series of weight 4, G4(z), has a
simple zero at z = ρ.

Exercise 2.17. Show that the non-normalized Eisenstein series of weight 6, G6(z), has a
simple zero at z = i.
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2.2 Ramanujan’s Cusp Form

Recall that yesterday we obtained a normalized Eisenstein series, which we can rewrite
in terms of Bernoulli numbers and sigma functions as follows.

G2k(z) = 2ζ(2k) +
2(−2πi)2k

(2k− 1)!

∞

∑
n=1

σ2k−1(n)qn =⇒ E2k(z) = 1− 2k
B2k

∞

∑
n=1

σk−1(n)qn

where σs(n) = ∑s|n ds.
From now on, many important modular forms will be in form of sums of products

of the normalized Eisenstein series.

Definition 2.18. Ramanujan’s cusp form is defined to be

∆ :=
E3

4 − E2
6

1728
.

Remark 2.19. • In Day 2’s homework and Day 3’s notes, we have seen that the di-
rect sum of all spaces of modular forms,

⊕
n∈Z Mn(SL2(Z)) is a C-algebra. In

particular, both E3
4 and E2

6 ∈ M12(SL2(Z)) and so are their linear combinations
with coefficients in C. We can verify that E3

4 − E2
6 is a cusp form (Exercise).

• The usage of the notation ∆ is due to its appearance as an error term in counting
the number of ways of expressing an integer as a sum of 24 squares. It is also
named the discriminant modular form.

• If you are interested, read about Ramanujan’s τ-function to get a sense of why
this Ramanujan’s cusp form is essential to the arithmetic geometry and number
theory. key words: Ramanujan’s Conjecture, Weil Conjecture.

2.3 The Dimension Formula

We describe the spaces of modular forms of all weights of level 1 in terms of their di-
mensions and their relations with cusp form subspaces.

Theorem 2.20. (i) Mn(SL2(Z)) = {0}, for n < 0 and n = 2.

(ii) Mn(SL2(Z)) has dimension 1, spanned by 1 for n = 0 and Gn for n = 4, 6, 8, 10.

(iii) There is an isomorphism

φ∆ : Mn−12(SL2(Z))
∼=−→ S2k(SL2(Z))

where φ∆ is defined by
φ∆ : f 7→ f · ∆.
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Proof. We have proved (i) (ii) in Day 3’s class and homework by Valence Formula and
the fact that Mn(SL2(Z)) is a C-vector space.

To prove (iii), we need to show that φ∆ is injective and surjective.

• Injectivity: ker(φ∆) = { f ∈ Mn(SL2(Z)) : f ∆ = 0 ∈ Sn(SL2(Z))} = {0}, since ∆
is not identically 0.

• Surjectivity: Let f ∈ Sn(Z). Then the function g := f
∆ is a modular function of

weight n− 12 on H ∪ {i∞}. To see that g is holomorphic on H and i∞, consider
the order of g on these points

vp(g) = vp( f )− vp(∆) =

{
vp( f )− 1, p = i∞
vp( f ), p 6= i∞.

Theorem 2.21. For n ≥ 0, the dimension formula for Mn(SL2(Z)) is as follows.

dim Mn(SL2(Z)) =

{
bn/12c, n ≡ 2 mod 12
bn/12c+ 1, n 6≡ 2 mod 12.

(2.2)

Proof. By part (i) and part (ii) of the previous theorem, we know that the Dimension
Formula is true for n < 12.

Fro n ≥ 12, we know that

dimC Mn(SL2(Z)) = dimC(CEn) + dimC Sn(SL2(Z))

= 1 + dimC Mn−12(SL2(Z)),

by the decomposition Mn(SL2(Z)) = CEn ⊕ Sn(SL2(Z)). The results follows by induc-
tion.

Theorem 2.22. Let n ≥ 0. The space Mn has as basis the modular forms Eα
4 Eβ

6 , where α, β runs
over all possible nonnegative integers such that 4α + 6β = n.

Proof. Exercise.
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3 Back to the End

3.1 The Modular Invariant

At the end of my Algebraic Number Theory course, we briefly mentioned the j-invariant.
In particular, the value of the function f (x) = eπ

√
x at Heegner numbers ≥ 19 are

extremely close to integers. For example:

eπ
√

19 ≈ 963 + 744− 0.22

eπ
√

43 ≈ 9603 + 744− 0.000 22

eπ
√

67 ≈ 5 2803 + 744− 0.000 0013

eπ
√

163 ≈ 640 3203 + 744− 0.000 000 000 000 75

We remarked that:

j((1 +
√
−19)/2) = 963 = (25 · 3)3

j((1 +
√
−43)/2) = 9603 = (26 · 3 · 5)3

j((1 +
√
−67)/2) = 5 2803 = (25 · 3 · 5 · 11)3

j((1 +
√
−163)/2) = 640 3203 = (26 · 3 · 5 · 23 · 29)3.

Definition 3.1. The j-invariant is defined to be

j :=
E3

4
∆

.

Proposition 3.2. (i) The j-invariant is a modular function of weight 0.

(ii) The j-invariant is holomorphic onH and has a simple pole at infinity.

(iii) The j-invariant gives a bijection between D and C. That is, the map φj; D → C

φj : z 7→ j(z) ∈ C

defines a bijection between D and C.

Proof. (i)(ii) are obvious from definition.
For (iii), we show that for every λ ∈ C, there exists a unique point p ∈ D such that

j(p) = λ. Let λ ∈ C. To find the solution of j(p) = λ, is equivalent to finding the
solution for the equation

E4(p)3 − λ∆ = 0,

which is the same as finding the zero of the modular form of weight 12,

fλ = E3
4 − λ∆.

17



By the Valence Formula, the solution (a, b, c, d) for a, b, c, d ∈ Z≥0 to the equation

vi∞( f ) + vi( f ) + vρ( f ) + ∑
p 6=i,ρ,i∞

vp( f ) =
12
12

= 1,

has to be one of
(0, 2, 0, 0), (0, 0, 3, 0) and (0, 0, 0, 1).

Hence there exits only one unique zero z of fλ such that j(z) = λ.

18



3.2 Exercises for Day 4

Exercise 3.3. Verify that Ramanujan’s cusp form is indeed a cusp form, i.e. it vanishes
at i∞.

Exercise 3.4. Show that ∆ does not vanish on H. Deduce that the function defined by
g = f

∆ is holomorphic onH and at i∞.

Exercise 3.5. Show the dimension formula for spaces of cusp forms: For n ≥ 0, the
dimension formula for Sn(SL2(Z)) is as follows.

dim Sn(SL2(Z)) =

{
bn/12c − 1, n ≡ 2 mod 12
bn/12c, n 6≡ 2 mod 12.

(3.1)

Exercise 3.6. This exercise walks you through the whole proof of the Theorem 2.22 that
states: The space Mn has the modular forms Eα

4 Eβ
6 as basis, where α, β runs over all

possible nonnegative integers such that 4α + 6β = n.
Let f ∈ Mn(SL2(Z)). First, we show that Eα

4 E2
6 form a generating set. We proceed

by induction on n.

• Base Cases: Gather past homework and notes in class, and think about why this
theorem is clear for 0 ≤ n ≤ 10.

• Show that for any non-negative even integer n such that Mn is nontrivial, we can
find integers α, β such that 4α + 6β = n.

• Show that g = Eα
4 Eβ

6 has weight n = 4α + 6β and is non-zero at i∞. Hence there
exists λ 6= 0 ∈ C such that f − λg that vanishes at i∞. In other words, f − λg ∈
Sn(SL2(Z)).

• Use Theorem 2.20, the fact that f − λg ∈ Sn(SL2(Z)) and inductive arguments
to conclude that the monomials Eα

4 Eβ
6 for various nonnegative α, β values span

Mn(SL2(Z)).

Now we show that the generating set elements are indeed linearly independent.

• Suppose we have cαβ ∈ C such that

∑
4α+6β=n

cαβEα
4 Eβ

6 = 0.

Conclude that α, β ≥ 1 in the above summation. 3

• Rewrite the summation as

∑
4(α−1)+6(β−1)=n

cαβEα−1
4 Eβ−1

6 (E4E6) = 0.

Divide through by E4E6 and conclude that eventually all cαβ need to be 0.

3 Hint:Day3’shomeworktellsyouzerosofE4,E6.Plugin.Sometermsinthesummationareforcedtovanish,i.e.somecαβ=0.
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3.3 Lattices

Definition 3.7. A lattice is an additive subgroup L of C that is generated by ω1, ω2 ∈ C

that are linearly independent over R.

Definition 3.8. Two lattices L1, L2 are homothetic if there exists some complex number
c such that L1 = cL2.

Remark 3.9. Homothety is an equivalence relation on the set of all lattices in C.

The following propositions show that lattices in the same homothety class are SL2(Z)-
equivalent.

Proposition 3.10. If ω1, ω2 are linearly independent over R and γ ∈ SL2(Z), then the lattice
L′ generated by aω1 + bω2 and cω1 + dω2 is the same as the lattice L generated by ω1 and ω2.

Proof. Clearly, L′ ⊆ L. Then for any m, n ∈ Z, we can always find integer x, y such thata b

c d

x

y

 =

m

n


since ad− bc = 1.

Proposition 3.11. If two lattices L, L′ generated by (ω1, ω2), (ω′1, ω′2) respectively are homo-
thetic, then there exists a γ ∈ SL2(Z) such that ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 where
a, b, c, d are entries of γ.

Remark 3.12. This gives us a bijection:

SL2(Z)\H 1:1←→ {Homothety or isomorphism classes of lattices}

3.4 Elliptic Functions and Weierstrass ℘ Function

Definition 3.13. An elliptic function for L is a meromorphic complex function f (z)
defined on C such that

f (z + ω) = f (z)

for all ω ∈ L.

Remark 3.14. Since an elliptic function is periodic in two directions, we also call it a
doubly periodic function.

Definition 3.15. The Weierstrass ℘-function of the lattice L is an elliptic function de-
fined as

℘(z; L) =
1
z2 + ∑

ω∈L−{0}

(
1

(z−ω)2 −
1

ω2

)
.
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Notation 3.16. Since L is uniquely defined by a tuple of complex numbers (ω1, ω2) for
ω1, ω2 6= 0, then L can be uniquely defined by (ω1

ω2
, 1). Geometrically this corresponds

to rotating this pair ω1, ω2 to lie in the upper half plane H. Since each term of in our
previouly defined G2k(z) corresponds to a lattice point and z, 1 are the basis elements,

G2k(L) := G2k

(
ω1

ω2

)
= ∑

m,n∈Z,m ω1
ω2

+n 6=0

1
(m ω1

ω2
+ n)2k ,

where ω1, ω2 are the basis of the lattice.

Theorem 3.17. Let L be a lattice and g4(L) := 60G4(L) and g6(L) := 140G6(L). The
Weierstrass ℘-function ℘ satisfies the differential equation for all z ∈ C.

(℘′(z; L))2 = 4℘(z; L)3 − g4(L)℘(z; L)− g6(L).

Proof. Since for all z ∈ H, ∆(z) = (2π)12(g3
2 − 27g2

3) 6= 0, for all lattices in the upper
half plane the following holds:

∆(L) = (2π)12(g2(L)3 − 27g3(L)2) 6= 0.

The rest of the proof involves explicitly writing out Laurent expansions and comparing
terms. In Proposition 3.2, we have seen that z 7→ j(z) gives a bijection from D to C. The
proof uses this to find a complex number λ to find approprately scaling.

Given a lattice L, by the double periodicity of ℘ function, ℘ is technically defined on
C/L which is a complex torus.

The map from the complex torus TL := C/L to a complex projective space defined
by

z 7→
[
℘(z) :

℘(z)′

2
: 1
]
∈ P2

gives an isomorphism (between Riemann surfaces) from the torus TL to the cubic curve.
This is to say that, every elliptic curve is a torus.

Theorem 3.18. The isomorphism classes of lattices correspond to the isomorphism classes of
elliptic curves over C.

Recall that the j-invariant j(z) = E3
4(z)
∆ .

Corollary 3.19. For any two elliptic curve E1, E2, E1
∼= E2 if and only if j(E1) ∼= j(E2).
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